Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Léon Dupont, ${ }^{\text {a* }}$

Mouslim Messali, ${ }^{\text {b }}$
Léon Christiaens ${ }^{\text {b }}$ and Guy Evrard ${ }^{\text {c }}$
${ }^{\text {a }}$ Unité de Cristallographie, Institut de Physique bât. B5, Université de Liège, Allée du 6 août, 17, B-4000 Liège, Belgium, ${ }^{\text {b }}$ Chimie Hétérocyclique Organique, des Chalcogènes, Institut de Chimie - bât. B6, Université de Liège, Allée de la Chimie, 17, B-4000 Liège, Belgium, and ${ }^{\text {c }}$ Laboratoire de Chimie Moléculaire Structurale, Facultés Universitaires Notre-Dame de la Paix, Rue de Bruxelles, 61, B-5000 Namur, Belgium

Correspondence e-mail: leon.dupont@ulg.ac.be

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
Disorder in main residue
R factor $=0.033$
$w R$ factor $=0.085$
Data-to-parameter ratio $=14.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

2-(2,4-Dibromophenylamino)-7-nitro-benzisoselenazol-3-one

The crystal structure determination of the title compound, $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Se}$, was undertaken in the course of a study on 1,2-benzoselenazin-4-one heterocycle homologues of ebselen, a well known anti-oxidizing agent. It allowed unambiguous identification of the molecular formula of the compound. The Br atom in the 4 position is split into two sites with occupation factors of 55 and 45%. The dihedral angle between the phenyl and benzisoselenazole mean planes is $85.0(5)^{\circ}$. Analysis of the crystal packing shows infinite chains of molecules along the b axis, linked together by an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bond.

Comment

Although it has attractive anti-inflammatory activity and low toxicity, ebselen (Natterman/RP, 1981; Dupont et al., 1990) exhibits some physicochemical failings. Its low solubility in organic solvents and its high melting point ($453-455 \mathrm{~K}$) induce a feeble metabolism. Moreover, a photochemical reaction is observed with the time and enjoins particular form of conditioning; the drug capsules must have an opaque envelope to protect the drug from light. In the course of synthesizing new molecules of benzo $[e]-1,2$-selenazin- 4 -one family which could be potential anti-oxidizing agents, the title compound, (I), was obtained and the unexpected structure determined by X-ray diffraction.

(I)

In the final cycles of refinement, the position of atom Br 2 was split into two sites, $\operatorname{Br} 2 A$ and $\operatorname{Br} 2 B$, with occupation factors of 0.45 and 0.55 , respectively. The introduction of this disordered distribution greatly improved the residual densities in the final difference map and also the conventional R and $w R 2$ values. The distances and angles are similar to those found in 7-nitro-2-phenyl-1,2-benzisoselenazol-3(2 H)-one, (II) (Dupont et al., 1988). In (II) the dihedral angle between the phenyl and heterocycle mean planes is $13.2(1)^{\circ}$, whereas in (I) the corresponding planes are nearly orthogonal [85.0 (5) ${ }^{\circ}$]. The cohesion of the crystal is the result of an $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, which links molecules indefinitely along the b axis (Fig. 2), and of van der Waals interactions. There is also a short intramolecular $\mathrm{N} 3 \cdots \mathrm{Br} 1$ contact

Received 6 June 2002
Accepted 2 July 2002
Online 12 July 2002

Figure 1
The molecular structure of (I), with the atom-labelling scheme. Displacement ellipsoids are shown at 50% probability levels. Atom $\mathrm{Br} 2 A$ (occupation factor $=45 \%$) has been omitted.
[3.074 (3) \AA], but, as the $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ angle is rather narrow [103 (3) ${ }^{\circ}$], it could hardly be considered as a hydrogen bond. The packing shows five other short intermolecular contacts: $\mathrm{Br} 1 \cdots \mathrm{Br} 2 A^{\mathrm{i}} 3.629(6), \mathrm{Br} 1 \cdots \mathrm{Br} 2 B^{\mathrm{i}} 3.524$ (5), $\mathrm{Br} 1 \cdots \mathrm{O} 2^{\mathrm{ii}}$ 3.376 (4), $\mathrm{Br} 2 A \cdots \mathrm{O} 1^{\mathrm{iii}} 3.261$ (7) and $\mathrm{Br} 2 B \cdots \mathrm{O} 1^{\text {iii }} 3.368$ (6) \AA [symmetry codes: (i) $1-x,-1 / 2+y, 1 / 2-z$; (ii) $1 / 2-x, 1 / 2+y, z$; (iii) $-x, 1 / 2+y, 3 / 2-z]$.

Experimental

The title compound was prepared by treatment of 2-methylseleno-3-nitro- $3^{\prime}-N$-phenylbenzoylhydrazide with 3 equivalents of bromine in a solution of dichloroethane (Messali, 2001). An orange single crystal was obtained by slow evaporation of a toluene solution.

Figure 2
Projection of the structure along a, with the scheme of hydrogen bonds. The packing range is expanded horizontally along b, to show two unit cells.

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Se}$
$M_{r}=492.00$
Orthorhombic, Pbca
$a=13.8685$ (10) \AA
$b=8.6075(10) \AA$
$c=25.233(2) \AA$
$V=3012.1(5) \AA^{3}$
$Z=8$
$D_{x}=2.170 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=30-42^{\circ}$
$\mu=9.75 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, orange
$0.30 \times 0.25 \times 0.15 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\theta / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.12, T_{\text {max }}=0.39$
3587 measured reflections
3075 independent reflections
2634 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.085$
$S=1.10$
3075 reflections
213 parameters
H atoms treated by a mixture of independent and constrained refinement
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=74.2^{\circ}$
$h=-17 \rightarrow 10$
$k=0 \rightarrow 10$
$l=0 \rightarrow 31$
3 standard reflections every 200 reflections intensity decay: 4%

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0307 P)^{2}\right. \\
& \quad+4.0625 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.44 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.48 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{Br} 1-\mathrm{C} 9$	$1.890(4)$	$\mathrm{N} 1-\mathrm{C} 2$	$1.446(5)$
$\mathrm{Se} 1-\mathrm{C} 1$	$1.855(3)$	$\mathrm{N} 2-\mathrm{C} 7$	$1.35(5)$
$\mathrm{Se} 1-\mathrm{N} 2$	$1.899(3)$	$\mathrm{N} 2-\mathrm{N} 3$	$1.386(4)$
$\mathrm{O} 1-\mathrm{N} 1$	$1.228(4)$	$\mathrm{N} 3-\mathrm{C} 8$	$1.385(5)$
$\mathrm{O} 2-\mathrm{N} 1$	$1.230(5)$	$\mathrm{C} 11-\mathrm{Br} 2 A$	$1.847(6)$
$\mathrm{O} 3-\mathrm{C} 7$	$1.220(4)$	$\mathrm{C} 11-\mathrm{Br} 2 B$	$1.939(6)$
$\mathrm{C} 1-\mathrm{Se} 1-\mathrm{N} 2$	$83.82(14)$	$\mathrm{C} 7-\mathrm{N} 2-\mathrm{Se} 1$	$117.5(2)$
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{O} 2$	$123.9(4)$	$\mathrm{N} 3-\mathrm{N} 2-\mathrm{Se} 1$	$121.6(3)$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{N} 3$	$120.6(3)$	$\mathrm{C} 8-\mathrm{N} 3-\mathrm{N} 2$	$119.3(3)$
$\mathrm{C} 1-\mathrm{Se} 1-\mathrm{N} 2-\mathrm{C} 7$	$1.2(3)$	$\mathrm{Se} 1-\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 8$	$-93.8(4)$
$\mathrm{C} 1-\mathrm{Se} 1-\mathrm{N} 2-\mathrm{N} 3$	$-173.1(3)$		

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H30 $\cdots \mathrm{O}^{\mathrm{i}}$	$0.93(4)$	$1.98(4)$	$2.826(4)$	$151(4)$

Symmetry code: (i) $\frac{1}{2}-x, y-\frac{1}{2}, z$.

Least-squares restraints were applied to refine the disordered positions of $\mathrm{Br} 2 A$ and $\mathrm{Br} 2 B$. All H atoms, with the exception of the nitrogen-bound atom (H30), were included in the refinement in the riding-model approximation, with isotropic displacement parameters fixed at $1.2 U_{\text {eq }}$ of the parent atom. H30 was refined isotropically, its displacement parameters being fixed at $1.2 U_{\text {eq }}$ of the attached N atom.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1992); cell refinement: CAD-4 EXPRESS; data reduction: HELENA (Spek, 1997); program(s) used to solve structure: SIR92 (Altomare et al.,

organic papers

1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996) and MERCURY 1.1 (Bruno et al., 2002); software used to prepare material for publication: SHELXL97.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389-397.

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Dupont, L., Dideberg, O., Sbit, M. \& Dereu, N. (1988). Acta Cryst. C44, 21592161.

Dupont, L., Dideberg, O. \& Jacquemin, P. (1990). Acta Cryst. C46, 484-486. Enraf-Nonius (1992). CAD-4 EXPRESS. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Messali, M. (2001). PhD thesis, University of Liège, Belgium.
Natterman/RP (1981). Eur. Patent EP 44971.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (1997). HELENA. Utrecht University The Netherlands.

